(0) Obligation:

Clauses:

q(X) :- p(X, 0).
p(0, X1).
p(s(X), Y) :- p(X, s(Y)).

Query: q(g)

(1) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
q_in: (b)
p_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

q_in_g(X) → U1_g(X, p_in_gg(X, 0))
p_in_gg(0, X1) → p_out_gg(0, X1)
p_in_gg(s(X), Y) → U2_gg(X, Y, p_in_gg(X, s(Y)))
U2_gg(X, Y, p_out_gg(X, s(Y))) → p_out_gg(s(X), Y)
U1_g(X, p_out_gg(X, 0)) → q_out_g(X)

The argument filtering Pi contains the following mapping:
q_in_g(x1)  =  q_in_g(x1)
U1_g(x1, x2)  =  U1_g(x2)
p_in_gg(x1, x2)  =  p_in_gg(x1, x2)
0  =  0
p_out_gg(x1, x2)  =  p_out_gg
s(x1)  =  s(x1)
U2_gg(x1, x2, x3)  =  U2_gg(x3)
q_out_g(x1)  =  q_out_g

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

q_in_g(X) → U1_g(X, p_in_gg(X, 0))
p_in_gg(0, X1) → p_out_gg(0, X1)
p_in_gg(s(X), Y) → U2_gg(X, Y, p_in_gg(X, s(Y)))
U2_gg(X, Y, p_out_gg(X, s(Y))) → p_out_gg(s(X), Y)
U1_g(X, p_out_gg(X, 0)) → q_out_g(X)

The argument filtering Pi contains the following mapping:
q_in_g(x1)  =  q_in_g(x1)
U1_g(x1, x2)  =  U1_g(x2)
p_in_gg(x1, x2)  =  p_in_gg(x1, x2)
0  =  0
p_out_gg(x1, x2)  =  p_out_gg
s(x1)  =  s(x1)
U2_gg(x1, x2, x3)  =  U2_gg(x3)
q_out_g(x1)  =  q_out_g

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

Q_IN_G(X) → U1_G(X, p_in_gg(X, 0))
Q_IN_G(X) → P_IN_GG(X, 0)
P_IN_GG(s(X), Y) → U2_GG(X, Y, p_in_gg(X, s(Y)))
P_IN_GG(s(X), Y) → P_IN_GG(X, s(Y))

The TRS R consists of the following rules:

q_in_g(X) → U1_g(X, p_in_gg(X, 0))
p_in_gg(0, X1) → p_out_gg(0, X1)
p_in_gg(s(X), Y) → U2_gg(X, Y, p_in_gg(X, s(Y)))
U2_gg(X, Y, p_out_gg(X, s(Y))) → p_out_gg(s(X), Y)
U1_g(X, p_out_gg(X, 0)) → q_out_g(X)

The argument filtering Pi contains the following mapping:
q_in_g(x1)  =  q_in_g(x1)
U1_g(x1, x2)  =  U1_g(x2)
p_in_gg(x1, x2)  =  p_in_gg(x1, x2)
0  =  0
p_out_gg(x1, x2)  =  p_out_gg
s(x1)  =  s(x1)
U2_gg(x1, x2, x3)  =  U2_gg(x3)
q_out_g(x1)  =  q_out_g
Q_IN_G(x1)  =  Q_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x2)
P_IN_GG(x1, x2)  =  P_IN_GG(x1, x2)
U2_GG(x1, x2, x3)  =  U2_GG(x3)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

Q_IN_G(X) → U1_G(X, p_in_gg(X, 0))
Q_IN_G(X) → P_IN_GG(X, 0)
P_IN_GG(s(X), Y) → U2_GG(X, Y, p_in_gg(X, s(Y)))
P_IN_GG(s(X), Y) → P_IN_GG(X, s(Y))

The TRS R consists of the following rules:

q_in_g(X) → U1_g(X, p_in_gg(X, 0))
p_in_gg(0, X1) → p_out_gg(0, X1)
p_in_gg(s(X), Y) → U2_gg(X, Y, p_in_gg(X, s(Y)))
U2_gg(X, Y, p_out_gg(X, s(Y))) → p_out_gg(s(X), Y)
U1_g(X, p_out_gg(X, 0)) → q_out_g(X)

The argument filtering Pi contains the following mapping:
q_in_g(x1)  =  q_in_g(x1)
U1_g(x1, x2)  =  U1_g(x2)
p_in_gg(x1, x2)  =  p_in_gg(x1, x2)
0  =  0
p_out_gg(x1, x2)  =  p_out_gg
s(x1)  =  s(x1)
U2_gg(x1, x2, x3)  =  U2_gg(x3)
q_out_g(x1)  =  q_out_g
Q_IN_G(x1)  =  Q_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x2)
P_IN_GG(x1, x2)  =  P_IN_GG(x1, x2)
U2_GG(x1, x2, x3)  =  U2_GG(x3)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P_IN_GG(s(X), Y) → P_IN_GG(X, s(Y))

The TRS R consists of the following rules:

q_in_g(X) → U1_g(X, p_in_gg(X, 0))
p_in_gg(0, X1) → p_out_gg(0, X1)
p_in_gg(s(X), Y) → U2_gg(X, Y, p_in_gg(X, s(Y)))
U2_gg(X, Y, p_out_gg(X, s(Y))) → p_out_gg(s(X), Y)
U1_g(X, p_out_gg(X, 0)) → q_out_g(X)

The argument filtering Pi contains the following mapping:
q_in_g(x1)  =  q_in_g(x1)
U1_g(x1, x2)  =  U1_g(x2)
p_in_gg(x1, x2)  =  p_in_gg(x1, x2)
0  =  0
p_out_gg(x1, x2)  =  p_out_gg
s(x1)  =  s(x1)
U2_gg(x1, x2, x3)  =  U2_gg(x3)
q_out_g(x1)  =  q_out_g
P_IN_GG(x1, x2)  =  P_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(7) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P_IN_GG(s(X), Y) → P_IN_GG(X, s(Y))

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(9) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P_IN_GG(s(X), Y) → P_IN_GG(X, s(Y))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(11) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • P_IN_GG(s(X), Y) → P_IN_GG(X, s(Y))
    The graph contains the following edges 1 > 1

(12) YES